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Abstract. A novel exact solution of the multichannel spin-S Kondo model is presented, based on a lattice
path integral approach of the single channel spin-1/2 case. The spin exchange between the localized moment
and the host is of XXZ-type, including the isotropic XXX limit. The free energy is given by a finite set
of non-linear integral equations, which allow for an accurate determination of high- and low-temperature
scales.

PACS. 72.15.Qm Scattering mechanisms and Kondo effect – 04.20.Jb Exact solutions – 75.20.Hr Local
moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions – 75.10.Lp Band and
itinerant models

1 Introduction

The isotropic multichannel spin-S Kondo model describes
the XXX-like spin scattering between non-interacting
spin-1/2 fermions in m channels and a single localized
spin-S impurity. It has been proposed by Nozières and
Blandin [1] to account for the orbital structure of spin-S
impurities in metals. Physical realizations are discussed
in the review article [2]. An exact solution to this model
was found by Tsvelick and Wiegmann [3–5] using the
Bethe Ansatz (BA). By applying the thermodynamic
Bethe Ansatz (TBA), the thermodynamics has been cal-
culated by Tsvelick [6] and Andrei and Destri [7]. In
the TBA approach, the free energy is encoded by in-
finitely many coupled non-linear integral equations. Re-
cently, Schlottmann [8,9] and Zaránd et al. [10] obtained
the free energy for the anisotropic multichannel spin-S
Kondo model with XXZ-like exchange in the TBA ap-
proach. Schlottmann observed a quantum critical point for
the overscreened model in the limit of low temperatures,
Zaránd et al. focused on the underscreened two-channel
model. Here, we present a novel exact solution in which
the free energy is encoded in a finite set of non-linear inte-
gral equations (NLIE), including both the anisotropic and
isotropic models for arbitrary S and m. On the one hand,
we confirm known results by this novel solution, on the
other hand, we obtain farther reaching results as far as
ratios of high- and low-temperature scales are concerned.

In a recent publication [11], we proposed a lattice path
integral approach to an Anderson-like impurity in a cor-
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related host. We obtained this model from the Hamilto-
nian limit of a gl(2|1) symmetric transfer matrix. The
free energy contributions of both the host and the im-
purity were calculated exactly by combining the Trotter
Suzuki mapping with the quantum transfer matrix tech-
nique. We showed that the model allows for the Kondo
limit, i.e. a localized magnetic impurity in a free host
with linearized energy-momentum relation. In the Kondo
limit, the symmetry of the coupling between host and im-
purity is reduced from gl(2|1) to su(2). In the following,
we exploit this observation to propose a Uqsu(2) symmet-
ric quantum transfer matrix (QTM), whose largest eigen-
value yields the free energy contribution of the impurity
in the thermodynamic limit, in close analogy to [11]. The
q-deformation accounts for an XXZ-like spin exchange
between the localized moment and the host, including the
isotropic limit q → 1. The transfer matrix is built from
local R-operators, each acting in the tensor product space
of two Uqsu(2) modules, carrying an (m+ 1)-dimensional
irrep and an (l + 1)-dimensional irrep of Uqsu(2), respec-
tively. Here m denotes the number of the electronic host
channels and l = 2S is twice the impurity spin. By mak-
ing use of analyticity arguments, the free energy is rep-
resented by (max[l,m] + 1)-many NLIE. These equations
are investigated both analytically and numerically for the
accurate calculation of scales in the limits of low and high
temperatures.

This article is organized as follows. In the next section,
the free energy contribution of the impurity is determined
as the largest eigenvalue of a certain QTM. The third and
fourth sections are devoted to the calculation of thermo-
dynamic equilibrium functions and scales in the limits of
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low and high temperatures, respectively. In the last sec-
tion, we summarize the results.

In all that follows we set kB = 1, and gµB = 1, where
kB is Boltzmann’s constant, g is the gyromagnetic factor
and µB is the Bohr magneton. An index i (h) denotes
quantities pertaining to the impurity (host).

2 Calculation of the free energy

Let V
(l)
q be the module carrying the l-dimensional ir-

rep of Uqsu(2); in the limit q = 1, V
(l)
1 carries

the l-dimensional irrep of su(2). Consider the matrices
R

(l,m)
q (x) ∈End

(
V

(l)
q ⊗ V

(m)
q

)
constructed such that the

Yang-Baxter-Equation (YBE) is fulfilled:

[
R(l,m)

q (x)
]β,γ

β′,γ′

[
R(n,m)

q (y)
]α,γ′

α′,γ′′

[
R(n,l)

q (y − x)
]α′,β′

α′′,β′′
=[

R(n,l)
q (y − x)

]α,β

α′,β′

[
R(n,m)

q (y)
]α′,γ

α′′,γ′

[
R(l,m)

q (x)
]β′,γ′

β′′,γ′′
.

The R(l,m)
q (x) are obtained by fusing a lattice of l × m

many operators R
(1,1)
q . Then V

(k)
q is the subspace of

completely symmetric tensors in
[
V

(1)
q

]⊗k

, with k =

l,m. In [12], the explicit expression of R
(l,m)
q (u) is

given. If in the isotropic single channel case, the spec-
tral parameter is chosen to take the special value

x0 :=
[

2
l+1 tanJ (l + 1)

]−1

, the matrix R
(l,1)
1 (x0) simpli-

fies to [13]

R
(l,1)
1 (x0) = exp [i2JS · σ] . (1)

The logarithm of equation (1) is the spin exchange op-
erator between the impurity spin S = l/2 and one elec-
tron, where the spin-exchange coupling J is parameterized
by x0.

It has been argued by Tsvelick et al. [3] that the ex-
change in the multichannel Kondo model is equivalent to
an exchange model for spin-m/2 electrons scattered by
the spin-S impurity. This equivalence has been proven by
the equality of the exact solutions of both models at zero
temperature. We expect that more insight into this ques-
tion is possible by a lattice path integral formulation in
analogy to the S = 1/2, m = 1, γ = 0 case [11]. We leave
this task as a future challenge. Here, we rely on the above
mentioned equivalence, so that the Hamiltonian density is
given by:

H = Hh + Hsd + Hex

Hh = −ivf

∑
σ=±1/2

m∑
k=1

:ψ†
σ,k(x)

d
dx
ψσ,k(x): (2a)

Hi = −iδ(x)
∑
σ,σ′

:ψ†
σ(x)

[
lnR(l,m)

q (x0)
]σ′

σ
ψσ′(x): (2b)

Hex =
h

2

 m/2∑
σ=−m/2

σnσ(x) + δ(x)
S∑

τ=−S

τnd,τ

 (2c)

nσ,k : = :ψ†
σ,kψσ,k:, nk =

∑
σ

nσ,k, nσ =
∑

k

nσ,k,

where x0 and q parameterize the coupling constants. In
the following, q is given by a real constant γ, q =: exp(iγ),
such that γ �= 0 induces an Ising-like anisotropy, J⊥ <

J||. The matrix R
(l,m)
q acts in the electronic space with

operator-valued entries in the impurity space. Only the
totally symmetric combination of spinors, with total spin
m/2, interacts with the impurity, so that the spin indices
in equation (2b) are σ, σ′ = −m/2, . . . ,m/2.

Consider the monodromy matrix

T (l,m)
q : =

[
R(l,m)

q

]
a,N

[
R(l,m)

q

]
a,N−1

. . .
[
R(l,m)

q

]
a,1

τ (l,m)
q = traT

(l,m)
q , (3)

where
[
R

(l,m)
q

]
a,n

acts in the tensor product V (l)
a ⊗ V

(m)
n .

In the last line the transfer matrix τ
(l,m)
q is defined as

the trace over the auxiliary space of T (l,m)
q . In view of

the definition of the Hamiltonian in equation (2b), the
auxiliary space a is identified with the impurity space and
the quantum spaces 1, . . . , N correspond to the electrons.
We will now show that under the substitution N → iβD,
the largest eigenvalue Λ(1,1)

1 (x0) of T (1,1)
1 (x0) is directly

related to the free energy contribution of the impurity fi

found in [11],

−βfi = lnΛ(1,1)
1 (x0)

∣∣∣
N→iβD

. (4)

Here D has the meaning of a bandwidth parameter of the
host. A magnetic field is introduced by twisted boundary
conditions.

The largest eigenvalue in equation (4) is expressed
through auxiliary functions b, b (B = 1 + b, B = 1 + b)
in analogy to [14]. After the substitution N → iβD, these
functions are given by the non-linear integral equation

ln b(x) = −2Dβ arctan ex +
βh

2
+
[
κ ∗ ln B − κ− ∗ ln B

]
(x), (5)

where κ(x) := 1
2π

∫∞
−∞

e−π/2|k|

2 cosh πk
2

eikxdk and κ±(x) := κ(x±
iπ). An equation similar to (5) holds with b → b, h →
−h and κ− → κ+. The free energy is obtained from the
auxiliary functions by

−βfi =
1
2π

∫ ∞

−∞

1
cosh(x+ x0)

ln[BB](x)dx.

These equations are equivalent to the corresponding TBA
equations [13], as can be shown by fusion techniques de-
scribed in [15]. Proceeding as in [13], the universal limit
D → ∞ is taken by defining the temperature scale

TK := 2De−πx0 . (6)
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This results in the D-independent equations

ln b(x) = −ex +
βh

2
+
[
κ ∗ ln B − κ− ∗ ln B

]
(x)

−βfi =
1
2π

∫ ∞

−∞

1
cosh(x+ T/TK)

ln[BB](x)dx,

in complete agreement with results from [11]. Thus we
argue that the impurity contribution to the free energy
of the anisotropic multichannel spin-S Kondo model is
given by

−βfi = lnΛ(l,m)
q (x0)

∣∣∣
N→iβD

, (7)

where the universal limit D → ∞ is implicit.
The eigenvalue Λ

(l,m)
q is found by standard Bethe-

Ansatz techniques [12,16]. Following [17], one introduces
suitably chosen auxiliary functions in order to exploit the
analyticity properties of the largest eigenvalue. We restrict
ourselves to the anisotropy parameter

γ <
π

2n
=: γmax, (8)

where n := max(l,m). We define a temperature scale

TK = 2De−πx0/γ , (9)

from which the isotropic case (6) is recovered by scaling
x0 → γx0. One is left with the following system of NLIE
for the auxiliary functions yj = 1 + Yj , (j = 1, . . . , n− 1),
bn = 1 + Bn and bn = 1 + Bn:

y(x) = d(x) + [κ̂ ∗ Y](x) (10)

y :=
(
ln y1, ln y2, · · · , ln yn−1, ln bn, ln bn

)T

Y :=
(
lnY1, lnY2, · · · , ln Bn, ln Bn

)T

d(x) :=

0, 0, . . . , 0, −ex︸︷︷︸
mthentry

, 0, . . . , 0, fγβh,−fγβh


T

κ̂(x) =



0 s(x) 0 · · · 0

s(x) 0 s(x) 0
...

0
. . . . . . . . . 0

0 . . . 0 s(x) s(x)
0 . . . s(x) κ(x) −κ−(x)
0 . . . s(x) −κ+(x) κ(x)


(11)

κ(x) =
1
2π

∫ ∞

−∞

sinh π
2 k

(
π
γ − (n+ 1)

)
2 cosh πk

2 sinh π
2 k

(
π
γ − n

) eikxdk (12)

γ→0
=

1
2π

∫ ∞

−∞

e−
π
2 |k|

2 cosh πk
2

eikx dk

s(x) =
1

2 coshx
, fγ =

1
2(1 − nγ/π)

γ→0
=

1
2
, (13)

and the free energy contribution of the impurity is given
by

fi(T, h) = −T


∫∞
−∞

lnYl(x)

2π cosh
(

x+ln T
TK

) dx, l < m

∫∞
−∞

ln[BlBl](x)

2π cosh
(

x+ln T
TK

) dx, l ≥ m
. (14)

Again, the magnetic field is introduced by twisted bound-
ary conditions. The integration kernel κ depends on n if
γ �= 0. The asymmetric driving term −ex in the mth equa-
tion gives rise to different asymptotes in the limits x→ ∞,
x→ −∞, summarized in the following:

lnY (−∞)
j = 2 ln

sinh βh
2 (j + 1)

sinh βh
2

(15a)

lnY (∞)
j<m = 2 ln

sin π
m+2(j + 1)
sin π

m+2

(15b)

lnY (∞)
j≥m = 2 ln

sinh βh
2 (j −m+ 1)

sinh αβh
2

(15c)

ln B(−∞)
n = ln

[
e

βh
2 n sinh βh

2 (n+ 1)

sinh βh
2

]
(15d)

ln B(∞)
n = ln

[
e

αβh
2 (n−m) sinh αβh

2 (n−m+ 1)

sinh αβh
2

]

with α = (1 − mγ/π)−1 and analogously for B
(±∞)

n =
B

(±∞)
n

∣∣∣
h→−h

. The limits of ln yj , ln bn, ln bn are obtained

from the above formulas by yj = Yj − 1, bn = Bn − 1 and
bn = Bn−1. For bn, the results take the simple expression

ln b(−∞)
n = ln

[
e

βh
2 (n+1) sinh βh

2 n

sinh βh
2

]

ln b(∞)
n = ln

[
e

αβh
2 (n−m+1) sinh αβh

2 (n−m)

sinh αβh
2

]

and similarly for bn with h→ −h.
The above presented derivation of the closed set of

finitely many integral equations for the impurity’s free en-
ergy is speculative in the sense that an observation made
for the well-understood case S = 1/2, m = 1 within
a path integral approach [11] is extended to the case of
general S and m. We intend to report on the generaliza-
tion of [11] in a future publication. Our claim, however,
that (10–13), (14) hold also in the general case follows
by a simpler reasoning. By use of the algebra [15,17] of
fused transfer matrices one can show that our key equa-
tions are equivalent to the infinitely many TBA equations
of [6] in the isotropic case and to the equations of [8,9] in
the anisotropic case. As an illustration, Figures 1–6 show
the entropy and specific heat of the impurity for some spe-
cial cases. The curves for γ = 0 agree nicely with similar
graphs in [2,18]; those for γ �= 0 are novel.
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Fig. 1. Entropy for impurity spin S = 5/2 and different
channel numbers. At low temperatures, the asymptotes ln(m+
1) depend on the channel number, at high temperatures, the
common asymptote ln(2S + 1) is approached.
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Fig. 2. Specific heat for impurity spin S = 5/2 and different
channel numbers. The inset shows the Fermi liquid behavior
limT→0 C(T )/T = const. for 2S = m = 5.
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Fig. 3. Entropy for m = 5 channels and spins S = 1/2, . . . 5/2.
In the low temperature limit, the entropy takes the un-
usual value ln {sin [π(2S + 1)/(m + 2)] / sin π/(m + 2)}, equa-
tion (15b), whereas for high temperatures, the asymptotes are
given by ln(2S + 1).
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Fig. 4. Specific heat for m = 5 channels and spins S =
1/2, . . . 5/2.
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Fig. 5. The entropy for the under-screened case S = 1, m = 1
with fields h = 0, 0.1, 1, 10 and anisotropies γ = 0, 0.9γmax =
0.707 (for γmax, see Eq. (8)).
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Fig. 6. The specific heat for the under-screened case S =
1, m = 1 with fields h = 0, 0.1, 1, 10 for anisotropies γ =
0, 0.9γmax = 0.707 (for γmax, see Eq. (8)).
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We expect that in the framework of a generalized lat-
tice path integral approach, additional electron-electron
interactions in the host must be introduced to keep the
model integrable. These interactions may lead to both a
renormalization of the Fermi velocity vf and the electronic
g-factor, analogous to the known exact solution [13]. These
additional interactions will be the concern of future work;
the analysis in this work is based on the model (2a–2c).

3 Low temperature evaluation

3.1 2S = m: Exact screening

The first non-vanishing order in a low temperature, low
field expansion of the free energy in the exactly screened
case can be obtained by expanding the corresponding in-
tegral in the following form

fi(T, h) = − T

2π

∫ ∞

−∞

ln
[
BlBl

]
(x)

cosh
(
x+ ln T

TK

)dx

T,h�TK= − T 2

πTK

∫ ∞

−∞
ex ln

[
BlBl

]
(x) dx. (16)

The temperature and the field are supposed to be small
compared to TK . As can be seen from equations (15), the
integral in equation (16) only exists for l = m. The above
approximation makes sense if T, h � TK . The integral in
equation (16) can be done exactly, by a generalization of
a method used in [19] leading to dilogarithms and applied
for instance to the spin-S Heisenberg chain in [17,20].

In the notation of equation (10), consider the integral

I(T, h) :=
∫ ∞

−∞

(
d
dx

y(x)Y(x) − y(x)
d
dx

Y(x)
)

dx.

(17)
From the symmetry of the integration kernels one deduces

fi(T, h) =
T 2

2πTK
I(T, h) − fγ

2πTK
h2m. (18)

On the other hand, the integral I(T, h) is calculated as
in [17] by using dilogarithmic identities, the result is

I = −π2 m

m+ 2
. (19)

Combining equations (18, 19), one gets the first term in
an expansion of the free energy for low fields and temper-
atures:

fi(T, h) = − T 2

2TK

πm

m+ 2
− m

4(π −mγ)
h2

TK
. (20)

From equation (20),

Ci(T ) =
T

TK

πm

m+ 2
χi(h) =

1
TK

m

2(π −mγ)
. (21)

These relations exhibit clearly the role of TK as a “low
temperature scale”. According to equation (21), the im-
purity contribution to the specific heat and magnetic sus-
ceptibility are Fermi liquid like at T, h � TK in the ex-
actly screened case l = m. This is the regime of “strong
coupling”: The anti-ferromagnetic spin exchange leads to
the formation of a many particle state between the im-
purity and the host electrons, which screens the magnetic
moment of the impurity. Elementary excitations of this
bound state are Fermi like. Nozières [1,21] built up a phe-
nomenological Fermi liquid theory to describe this regime.
This Fermi liquid behavior is to be compared with the
host. It consists of spin-1/2-fermions of m non-interacting
channels (or of m flavors), so that the density of states is
enhanced by a factor of m

Ch(T ) = T
mπ2

3
ρh χh(h) =

mρh

4
. (22)

The coefficient of the linear T -dependence of Ci (Ch) is
denoted by δi (δh). The low-temperature Wilson ratio R
is defined and calculated as

R := lim
T→0

χi

χh

δh
δi

=
2(m+ 2)

3
(
1 −m γ

π

) ≥ 2. (23)

The lower bound 2 is reached for m = 1, γ = 0. The
striking feature in comparing equations (21, 22) is that
Ci is reduced by a factor of 3/(2m+ 4) in comparison to
Ch, if the constant ρh is chosen such that χi = χh for
γ = 0. This may be interpreted by the localization of the
impurity: Contrary to the host electrons, it does not move,
so that the specific heat is reduced.

3.2 Linearization

In this section, the ground-state and the lowest T -
dependent contribution to the free energy are calculated
by linearizing the NLIE for h �= 0. From equations (15)
one observes that for h �= 0 and β → ∞ in the limit
x→ −∞ the auxiliary functions scale with βh. Especially,
limβ�1 ln Bl = 0+O (

e−βh
)
, so that one can neglect ln Bl

with exponential accuracy.
One introduces the scaling functions εj,

ln yj(x) =: βhKm εj(−x+ lnβhKm) j = 1, . . . , l − 1

ln bl(x) =: βhKm εl(−x+ lnβhKm),

where Km is defined by ln ym(ln βhKm) = 0. The shift in
the spectral parameter is performed in order to deal with
functions which have a zero in the origin,

εm(0) = 0. (24)

Note that therefore

εj(x)


> 0 , x > lnKm ; j = m

< 0, x < lnKm ; j = m

> 0 ; otherwise,

(25)
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so that one linearizes the logarithms

ln [1 + exp (βhKmεj(x))] =
βhKmεjθ(x) + O(const.), j < m

βhKmεmθ(x) + π2

6βhKm|εm(0)| δ(x), j = m

βhKmεj + O(exp(−const.βh)) j > m.

(26)

The linearization is done with exponential accuracy for
εj≥m, but with only algebraic accuracy for εj<m be-
cause of the constant asymptotes of the latter functions.
The first T -contribution for these is calculated below
within a different linearization scheme. Here, the lowest
T -contribution for the exactly and under-screened single
channel case l ≥ m = 1 is determined. For γ = 0, the
results of [13] are confirmed.

It is convenient to define a matrix Â−1

Â−1
i,j (k) :=

{
1 −Fk[κ] i = j = n

δi,j −Fk[s](δi,j+1 + δi,j−1) otherwise.
(27)

By inserting the ε-functions into the original set of NLIE
and using equations (26, 27) one obtains[

Â−1
ij ∗ εj

]
= δi,m

(
d̃m − ε−m

)
+ δi,l

fγ

Km
, (28)

where we have defined the driving term

d̃m(x) := −e−x +
π2

6βhKm|ε′m(0)| δ(x),

and

εj(x) =



ε+j,0(x), j < m

ε+j,0(x) + π2

6(βhKm)2|ε′m(0)|
(
U+

j (x) + δ(x)
)
,

j = m

εj,0(x) + π2

6(βhKm)2|ε′m(0)| Uj(x), j > m.

(29)
The terms εj,0 contain the ground-state, and from the rest,
the lowest T -dependent contributions are obtained. We
will calculate the latter explicitly for l ≥ m = 1. We made
use of the shorthand-notations

εj(x) θ(x) =: ε+j (x), εj(x) θ(−x) =: ε−j (x)

for functions in direct space. Their Fourier transforms are
denoted as

Fk

[
ε+j
]

=
1
2π

∫ ∞

−∞
ε+j (x)eikxdx =: ε+j (k),

hence an index + denotes analyticity in the upper half of
the complex k-plane. Define a new energy scale

Th :=
TK

Km
. (30)

Then the free energy, magnetization and specific heat are
given by

fi(h) = −hKm

2

∫ ∞

−∞

εl(k)
cosh πk

2

e−ik ln h
Th dk (31)

Mi(h) =
Km

2

∫ ∞

−∞

1 − ik
cosh πk

2

εl,0(k)e
−ik ln h

Th dk (32)

Ci(T, h) =
π2T

6hKm|ε′m(0)|
∫ ∞

−∞

Ul(k)e
−ik ln h

Th

cosh πk
2

dk. (33)

Obviously, the Wilson ratio Ci/(T χi) is a function of h
alone. In the following, the magnetization and the sus-
ceptibility are calculated from εl,0, and the specific heat
from Ul, defined in equation (29).

3.3 Under-screened and exactly screened cases,
2S ≥ m

The linear system (28) is solved by inverting the matrix
Â−1(k). This gives the matrix Â(k) with elements[

Â(k)
]

i,j
=

1
detÂ−1(k)

αi,j(k), (34)

where αi,j is the adjunct to
[
Â−1

]
i,j

in detÂ−1. Both

quantities are seen to satisfy recursion relations, which
can be solved explicitly with the results

detÂ−1(k) =
sinh π

γ
πk
2(

2 cosh πk
2

)l
sinh

(
π
γ − l

)
πk
2

Âj,j(k) =
2 cosh πk

2 sinh j πk
2 sinh

(
π
γ − j

)
πk
2

sinh πk
2 sinh π

γ
πk
2

Âj,l(k) =
2 cosh πk

2 sinh j πk
2 sinh

(
π
γ − l

)
πk
2

sinh πk
2 sinh π

γ
πk
2

. (35)

Other matrix elements are not needed. Then

εm(k)
Âm,m(k)

= −ε−m(k) + d̃m(k) +
Âm,l(k)
Âm,m(k)

fγ

Km
δ(k) (36)

εl(k) =
Âm,l(k)
Âm,m(k)

εm(k)

+

(
Âl,l(k) −

Â2
m,l(k)

Âm,m(k)

)
g

Km
δ(k). (37)

Equation (36) is solved by factorizing Âm,m into two func-
tions G±, G+ (G−) being analytic in the upper (lower)
half of the complex k-plane (Wiener-Hopf factorization),

Âm,m(k) = G+(k)G−(k). (38)
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Mi(h) =
l − m

2

1

1 − m
γ

π

+
m

4π3/2

1 − γ

π
l

1 − γ

π
m

∫ ∞

−∞
i

Γ

(
1

2
+ i

k

2

)
Γ

(
1 − i

k

2

)
Γ

(
1 − i

πk

2γ

)
Γ

(
1 + i

k

2

(
π

γ
− m

))
Γ

(
1 + i

k

2

(
π

γ
− l

))
Γ

(
1 − i

k

2

(
π

γ
− l

))
Γ

(
1 − i

mk

2

) e
−ik ln

h

Th
−iak

k + i0+
dk. (42)

The result is

ε+m,0(k) =
1
2π

G+(k)G−(−i)
(k + i0+)(k + i)

(39)

U+
1 (k)

∣∣
m=1

+ 1 =
1
2π

G+(k), l > 1, (40)

and

G+(k) =

(
2πm

(
1 − γ

π l
)

1 − γ
π (l −m)

) 1
2

×
Γ
(
1 − ik

2

)
Γ
(
1 − ik

2
π
γ

)
e−iak

Γ
(

1
2 − ik

2

)
Γ
(
1 − imk

2

)
Γ
(
1 − ik

2

(
π
γ −m

))
G−(k) = G+(−k).

The constant a is chosen to be a = − π
2γ ln(1 − γm/π) +

m
2 ln(1 − π/(γm)). From equation (36) the constant Km

is found to be

Km = fγ
Âm,l(0)
Âm,m(0)

G−(0)
G−(−i)

. (41)

With this information and equations (6, 30) we know the
magnetic field scale Th whose role is revealed in various
expansions of the magnetization m(h) below.

Ground state

The ground state contribution to the free energy equa-
tion (31) is given by inserting εl,0 from equation (37) with
equation (39).

The magnetization is written down from equation (32),

See equation (42) above.

The integral can be calculated by closing the contour in
the lower (h > Th) or in the upper (h < Th) half plane.
This results in two power series in Th/h for h > Th and in
h/Th for h < Th with integer and non-integer powers, de-
pending on the poles of the integrand. These calculations
are straightforward but lengthy. Especially, in the limits

h� Th, h	 Th, one extracts the constant values

Mi(h) →



l−m
2

1
1−m γ

π
+ O

((
h

Th

)2γ/(π−mγ)
)

;

l > m, h� Th

O
(

h
Th

)
; l = m,h� Th

l
2 + O

((
h

Th

)−2γ/π
)

; h	 Th.

(43)

Thus for h = 0, a non-integer rest-spin remains in the
case γ �= 0, l > m and h-dependent corrections are
of non-integer powers of h. The constant terms in (43)
agree precisely with the asymptotes, equations (15) and
with [8,9], where the same model was investigated by
TBA-techniques in the limits indicated in (43).

In the isotropic limit γ → 0

G+(k) =

√
2πmΓ

(
1 − ik

2

)
Γ
(

1
2 − ik

2

)
Γ
(
1 − ikm

2

) (−ikm
2e

)−i mk
2

Mi(h) =
m

4π3/2

∫ ∞

−∞
i
Γ
(

1
2 + ik

2

)
Γ
(
1 − ik

2

)
Γ
(
1 − imk

2

)
×
(
− ikm

2e

)−i km
2

e−
π|k|
2 (l−m) e

−ik ln h
Th

k + i0+
dk

+
l −m

2
→

{
l−m

2 , h� Th

l
2 , h	 Th

. (44)

In the last line, only the leading behavior due to the
simple pole at −i0+ for high fields has been included.
The integral in equation (44) has been given by Tsvelick
and Wiegmann, [4]. It allows to determine the zero-
temperature scales defined below. There are several sin-
gularities of the integrand equation (44) in the complex
k-plane:

i) m = l: Poles are distributed in the upper and lower
half-planes, with an additional dominating cut along
the negative imaginary axis.

ii) m < l: A cut along the whole imaginary axis goes
along with sub-leading poles in both the upper and
lower half planes.

Singularities in the lower (upper) half plane are relevant
for h > Th (h < Th). Poles kn = i(2n + 1), n = 0, 1, . . .
in the upper half plane only give a leading contribution
in the exactly screened case l = m. They have residuals
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2i(−1)n+1/n!, such that the magnetization is given by a
series

Mi(h < Th) m=l=
m√
π

∞∑
n=0

(−1)n

(2n+ 1)n!
Γ
(
n+ 1

2

)
Γ
(
m
(
n+ 1

2

))
×
(
m
(
n+ 1

2

)
e

)m(n+ 1
2 )(

h

Th

)2n+1

.

One recognizes the signature of a Fermi liquid in first or-
der: M(h) ∝ h and χ(h = 0) =const. Upon inserting ex-
plicit values, one finds agreement with equation (21). We
shall establish this agreement explicitly for arbitrary γ be-
low, equations (55, 56).

Let us draw our attention to the cut in the lower half
plane, for values l ≥ m. By linearizing the integrand, we
find

Mi(h > Th) − l

2
l≥m= −ml

4

(
1

ln h
Th

+
m

2

ln ln h
Th

ln2 h
Th

+
A

ln2 h
Th

+ O (
ln−3 h/Th

))

A =
1
2

[−m lnm+ (m− 2) ln 2] . (45)

The contribution O(ln−2 h/Th) is absorbed by the defini-
tion

Th = e−AT̃h (46)

Mi(h > T̃h) − l

2
l≥m
= −ml

4

(
1

ln h

T̃h

+
m

2

ln ln h

T̃h

ln2 h

T̃h

+ O
(
ln−3 h/T̃h

))
. (47)

Equation (46) defines the zero-temperature scale for large
magnetic fields.

Finally, upon “encircling” the cut in the upper half
plane, one only replaces the pre-factor l in equation (47)
by l −m and sets − lnh/T̃h = ln T̃h/h:

Mi(h < T̃h) l>m=
l −m

2
+
m(l −m)

4

(
1

ln T̃h

h

−m
2

ln ln T̃h

h

ln2 T̃h

h

+ O
(
ln−3 T̃h/h

))
. (48)

Note that this simple replacement does not hold for γ �=
0, as can already be seen from the lowest order, equa-
tion (43).

The free spin value of the magnetization is approached
logarithmically at high fields. This asymptotical freedom
in the weak coupling limit is a genuine feature of the
Kondo model. An analogous effect occurs for low fields in
the under-screened case; however, the first correction is of

opposite sign compared to the high-temperature case, cf.
equations (47, 48). Classical Fermi liquid behavior appears
at low temperatures if the impurity is exactly screened.
The physical origin of these results has been revealed by
Nozières [1] already before the exact solution of the Kondo
model was known: At high fields, corrections to the asymp-
totical freedom of the impurity spin are caused by the
weak anti-ferromagnetic coupling with the host particles.
At low fields, the impurity spin is partially screened due
to strong anti-ferromagnetic exchange. Two kinds of in-
teractions with this impurity-electron system may occur:
On the one hand, a weak ferromagnetic coupling of the
residual spin S − m/2 with the host, due to the Pauli
principle (this explains the change of sign in the leading
order on the rhs of Eqs. (47, 48)). On the other hand, a
polarization of the bound complex by host electrons, anal-
ogously to the Fermi liquid excitations at S = m/2. This
polarization is given by the poles and dominated by the
ferromagnetic Kondo interactions, reflected by the cuts in
the complex plane.

Finite temperature

After the calculation of the magnetization, we proceed
with the specific heat for l ≥ m = 1. By inserting equa-
tion (40) into equation (33), we get

Ci(T � TK , h)/T =
π2

3hK1|ε′1(0)|V (− lnh/Th),

where the Fourier transform of V (x) is given by

V (k) =

{
s(k)

[
U+

1 (k) + 1
]
, l = 1

A1l(k)
A11(k)s(k)

[
U+

1 (k) + 1
]
, l ≥ 1

.

From equation (40) it follows for l = 1 that V (k) =
G+(k)s(k), so that

Ci(T � TK , h)/T =
π2

3|ε′1(0)|G−(−i)K2
1

χ(h), (49)

where we have inserted equations (32, 39, 40). The con-
stant |ε′1(0)| is determined from the condition that equa-
tion (49) matches equation (21) for l = 1 = m, so that
|ε′1(0)| = 1/(K1G−(0)), and

Ci(T � TK , h)/T =
2π(π − lγ)

3
χi(h). (50)

3.4 Over-screened and exactly screened cases,
2S ≤ m (ground state)

In this section, we calculate the ground state for l ≤ m,
finite temperatures are dealt with in the next section.

If l ≤ m, there are m equations, the last one being

εm(x) = −e−x +
fγ

Km
+ [s ∗ εm−1 + κ ∗ εm](x),
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Mi(h) =
l

4π3/2

∫ ∞

−∞
i

Γ

(
1

2
+ i

k

2

)
Γ

(
1 + im

k

2

)
Γ

(
1 − i

k

2

)
Γ

(
1 − i

k

2

π

γ

)
Γ

(
1 − i

k

2

(
π

γ
− m

))
Γ

(
1 − il

k

2

)
Γ

(
1 + il

k

2

) e
−ik ln

h

Th
−iak

k + i0+
dk

h�Th→ l

2
. (53)

where g = 1
2(1−mγ/π) . On the right-hand side of equa-

tion (28), only the mth entry is different from zero. Con-
sequently,

ε+m(k)
Âm,m(k)

= −ε−m(k) + d̃m(k) +
fγ

Km
δ(k) (51)

εl =

[
Âl,m

Âm,m

]
ε+m. (52)

Equations (36, 51) are solved by the Wiener-Hopf method,
afterwards ε+m is inserted in equations (37, 52). The rele-
vant matrix entries read

Âm,m(k) =
2 cosh π

2 k sinhmπk
2 sinh πk

2

(
π
γ −m

)
sinh πk

2 sinh π
γ

πk
2

Âl,m(k) =
2 cosh π

2 k sinh l πk
2 sinh πk

2

(
π
γ −m

)
sinh πk

2 sinh πk
2

π
γ

.

With Âm,m(k) = G+(k)G−(k), the auxiliary functions
are given by

ε+m(k) =
1
2π

G+(k)G−(−i)
(k + i0+)(k + i)

G+(k) =

(
2mπ

(
1 −m γ

π

)) 1
2 Γ

(
1 − ik

2

)
Γ
(

1
2 − i k

2

)
Γ
(
1 − imk

2

)
×

Γ
(
1 − iπ

γ
k
2

)
e−iak

Γ
(
1 − ik

2

(
π
γ −m

)) ,
where Km = fγ

G−(0)
G−(−i) . In the limit of high fields h	 Th,

the magnetization reads

See equation (53) above.

The isotropic limit γ → 0 yields

G+(k) =

√
2mπ Γ

(
1 − ik

2

)
Γ
(

1
2 − ik

2

)
Γ
(
1 − imk

2

) (− ikm
2e

)−i mk
2

Mi(h) =
l

4π3/2

∫ ∞

−∞
i
Γ
(

1
2 + ik

2

)
Γ
(
1 + imk

2

)
Γ
(
1 − ik

2

)
Γ
(
1 − il k2

)
Γ
(
1 + il k2

)
×
(
− ikm

2e

)−i mk
2 e−ik ln h

Th

k + i0+
dk.

Note that for γ = 0, a cut along the negative part of
the imaginary axis occurs. It dominates the poles in the
lower half of the complex plane, and one is faced with the

expected Kondo behavior for h > Th, again in accordance
with [4].

For h < Th, the leading behavior is given by the poles
with smallest positive imaginary part.

Mi(h) ∝
(
h

TK

)2/m

, χ(h) ∝
(
h

TK

)2/m−1

. (54)

Thus over-screening induces non-integer exponents of h,
independent of γ, at T = 0.

Finally note that for l = m, the two expressions equa-
tions (44, 53) coincide. It is shown that the first non-
vanishing order linear in h of the magnetization leads
to the T = 0, h = 0 susceptibility, calculated in equa-
tion (21). For l = m, the magnetization reads

Mi(h) =
m

4π3/2

∫ ∞

−∞
i
Γ
(

1
2 + ik

2

)
Γ
(
1 − ik

2

)
Γ
(
1 − iπk

2γ

)
Γ
(
1 − imk

2

)
Γ
(
1 − ik

2

(
π
γ −m

))
× e−ik ln h

Th
−iak

k + i0+
dk.

Being interested in fields h < Th, one takes account of
the poles at kn := i(2n+ 1) with residuals 2i(−1)n+1/n!.
These result in the series

Mi(h) =
1

π1/2
(
1 − γ

πm
) ∞∑

n=0

(−1)n

(2n+ 1)n!

×
Γ
(

1
2 + n

)
Γ
(

π
γ

(
n+ 1

2

))
a2n+1

Γ
(
m
(

1
2 + n

))
Γ
((

π
γ −m

) (
n+ 1

2

)) (
h

Th

)2n+1

.

From the definition of Th, equation (30), one gets to first
order in h:

lim
h�Th

Mi(h) =
m

2π
(
1 − γ

πm
) h

TK
(55)

χi(T = 0, h = 0) =
m

2π
(
1 − γ

πm
) 1
TK

. (56)

This result is expected from equation (21).

Finite temperature

As pointed out above, we are not able to account for cor-
rections of the linearized functions εj<m, m > 1 in the
framework of the rigorous linearization. In the following,
we consider the case j < m for small magnetic fields
and low temperatures. For γ = 0, this case was treated
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previously by Affleck [22] using bosonization and CFT-
techniques. He calculated the low-temperature Wilson-
ratio analytically for arbitrary m. Analogous results have
been obtained by the TBA-solution [23] only for m = 2,
S = 1/2. Here, we will confirm Affleck’s findings for
m ≥ 2, extended to the anisotropic case γ �= 0.

First consider the case m = 2, 2S = 1. The relevant
auxiliary functions are given by:

ln y1(x) =
[
s ∗ ln B2B2

]
(x)

ln b2(x) = −ex +
βh

2
+ [s ∗ lnY1](x) + [κ ∗ ln B2] (x)

− [
κ− ∗ ln B2

]
(x)

fi(T, h) = − T

2π

∫ ∞

−∞

lnY1(x)

cosh
(
x+ ln T

TK

) dx. (57)

In Section 3.1, we found (Eq. (20) specialized to m = 2):

lim
x�0

[s ∗ ln B2B2](x) = e−x

(
π

4
− (βh)2

2(π − 2γ)

)
.

Consequently,

lim
x�0

lnY1(x) = ln 2 + e−x

(
π

8
− (βh)2

4(π − 2γ)

)
(58)

One approximates the kernel in the same scheme as in
equation (20),

lim
T�TK

1
cosh (x+ lnT/TK)

=
2T
TK

ex, x ≤ ln
T

TK
. (59)

The approximations (58, 59) lead to a constant integrand,
which we deal with by introducing a cutoff D,

fi(T, h) = − T

4π
ln 2

− T 2

TK

[
1
8

+
(βh)2

4π(π − 2γ)

] ∫ lnT/TK

D

1dx, D � 0

The cutoff D depends neither on T nor on h, so the oc-
currence of the logarithm lnT/TK in the above equation
leads to

lim
T,h�TK

Ci(T, h) = −1
4
T lnT/TK

TK
(60a)

lim
T,h�TK

χi(T, h) = − 1
2π(π − 2γ)

lnT/TK

TK
(60b)

Rw|m=2,2S=1 =
8

3(1 − 2γ/π)
, (60c)

confirming, for γ = 0, numerical findings by Sacra-
mento [23] and Affleck’s prediction.

For values m > 2, we perform an asymptotic lineariza-
tion of the NLIE in the region x → ∞, following [4].
Corrections to lnY (∞)

j are expressed through a correction
function Dj(x),

lnYj(x) = lnY (∞)
j +Dj(x), lim

x→∞Dj(x) = 0.

Linearizing ln yj to first order in Dj , j = 1, . . . ,m− 1

ln yj(x) =
1
2

lnY (∞)
j−1 Y

(∞)
j+1 +

f2
j

fj−1 fj+1
Dj(x)

fj : =
(
Y

(∞)
j

)1/2

=
sin π

m+2 (j + 1)
sin π

m+2

Dj(x) =
fj−1 fj+1

f2
j

[s ∗ (Dj−1 −Dj+1)] (x) (61)

Dm ≡ ln BmBm. (62)

Equation (61) has been derived for x	 0. This is approxi-
mately accounted for by writing Dj(x) ≡ Dj(x) θ(x). The
linearized equations form an algebraic system by Fourier
transforming. Each unknown function Dj(x) can be ex-
pressed in terms of Dm,

Dj(x) = [tj ∗Dm] (x) (63)

tj(k) : =
fj−1 sinh(j + 2)πk

2 − fj+1 sinh j πk
2

fj
g(k). (64)

As usual, Fk [tj(x)] := tj(k). We see that Dj from equa-
tion (63) satisfies equation (61) for j = 1, . . . ,m− 2. The
function g(k) has to be determined from the last equation
j = m− 1 and is found to be

g(k) =
[
2 cos

π

m+ 2
sinh(m+ 2)

πk

2

]−1

. (65)

The first equation, j = 0, is already contained in equa-
tion (63) by t0 ≡ 0 and therefore Dj=0 ≡ 0. Equa-
tions (64, 65) imply that the auxiliary functions lnYj be-
have as

lnYj(x→ ∞) ∼ lnY (∞)
j + const. × e−4x/(m+2). (66)

The constant is given through lnBB, equations (62, 63),
and will be determined numerically below. Combining
equations (63, 64) and (65), one finds for the impurity
part of the free energy

fi(T, h� TK) = −T ln
sin π(2S+1)

m+2

sin π
m+2

− T

2

∫ ∞

−∞

1
cosh πk

2

D2S(k) eik ln T/TK dk. (67)

Since T < TK , only negative imaginary values for k are
allowed.

The leading T -contribution is given by the singularity
closest to the real axis of the integrand in equation (67).
For m ≥ 3, this is a simple pole at km = −4i/(m+ 2), so
that

fi(T, h� TK) = −T ln
sin π(2S+1)

m+2

sin π
m+2

− Tα

(
T

TK

) 4
m+2

α =

(
sin 4πS

m+2 sin 2π(S+1)
m+2 − sin 2πS

m+2 sin 4π(S+1)
m+2

)
(m+ 2) cos π

m+2 cos 2π
m+2 sin π(2S+1)

m+2

×
∫ ∞

−∞
e

4x
m+2 ln[BmBm](x) dx. (68)
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Table 1. Numerical results for the low temperature Wilson ratios in the over-screened case m > 2S. In the isotropic case, we
compare our data with Affleck’s CFT approach [22], equation (71). For finite anisotropy, the values given in brackets are those
from equation (72).

m γ = 0 [22] γ = 0.2 γ = 0.5 γ = 0.8

2 0.202638 0.202642 0.2251582 (0.2251582) 0.2071899 (0.2071898) 0.3377373 (0.3377373)

3 0.370 0.369 0.4102 (0.4104) 0.490 (0.493) 0.607 (0.616)

4 0.60791 0.60793 0.6749 (0.6755) 0.805 (0.811) 0.99 (1.01)

5 0.928 0.931 1.033 (1.034) 1.23 (1.24) 1.51 (1.55)

-40 -30 -20 -10 0
ln T/T

K

1

1,5

2
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w

S=1/2
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S=3/2
S=2

Fig. 7. The low-temperature Wilon ratios for the overscreened
case with m = 5 and anisotropy γ = 0, 0.2, 0.5, 0.8γmax, where
the lowest set of curves is for γ = 0.

The specific heat and susceptibility are derived:

Ci(T, h = 0) = α|h=0

4(m+ 6)
(m+ 2)2

(
T

TK

) 4
m+2

(69a)

χi(T, h = 0) =
(
T

TK

) 4
m+2−1

∂2

∂(βh)2
α

∣∣∣∣
h=0

(69b)

The derivative in equation (69b) only acts upon the
integrand in equation (68). Both Ci/T and χi show the
same T -dependence, yielding the low-temperature Wilson
ratio, defined in equation (23):

Rw =
χi(T )
Ci(T )

Ch(T )
χh(T )

=
4π2

3
(m+ 2)2

4(m+ 6)

∂2α
∂(βh)2

α

∣∣∣∣∣∣
h=0

(70)

for m ≥ 3. The quantity α defined in (68) depends on
S,m, γ and βh, which is taken to be zero in (69a, 69b).
This means that the α-factors in (69a, 69b) are constant
and known, so that from measuring Ci or χi, the scale TK

can be determined. So the parameter TK has the meaning
of a low-temperature scale also in the overscreened case.

We did not find an analytical expression of the
integral in equation (68), but determined the coefficients
in equations (69a, 69b) numerically. Therefore, the
NLIE are solved as described in the appendix, and the
coefficient of the leading T 4/(m+2)-decay of Ci(T � TK),
χi(T � TK) · T is extracted from the numerical data. In
Figure 7 some curves are shown. The Wilson ratio for the
isotropic case is

Rw|γ=0 =
(2 +m/2)(2 +m)2

18
; m ≥ 2. (71)

For finite anisotropy γ �= 0, the magnetic field is scaled by
the factor 1/(1 −mγ/π) in the NLIE, equations (12, 13).
Furthermore, the non-integer powers in (69a, 69b)
are determined by the fusion hierarchy, (65), where
the anisotropy parameter γ does not enter explicitly.
We therefore conjecture that in analogy to the ex-
actly screened case (23) and two-channel overscreened
case (60c), the Wilson ratio for finite γ is

Rw|γ =
1

1 −mγ/π

(2 +m/2)(2 +m)2

18
; m ≥ 2. (72)

This means that anisotropy is irrelevant in the renormal-
ization group sense, in accordance with previous treat-
ments of the underscreened case by TBA [8–10]. On the
other hand it has been shown in the CFT-approach [24]
that a generic anisotropic spin-exchange is relevant. Since
the spin-exchange (2b) is a polynomial in the spin-
operators, the situation here is different from that in [24].
We leave further investigations on this issue as a future
task. In Table 1, our results are compared with equa-
tions (71, 72).

4 High temperature evaluation

In this section, the NLIE are analyzed in the limit of
high temperatures T 	 TK by an asymptotic lineariza-
tion. The fact that contrary to the TBA approach, we
deal with a finite set of NLIE, is most useful here. In the
isotropic single channel case, our results are farther reach-
ing than those obtained from the TBA equations [13], the
treatment of the isotropic multichannel case and of the
anisotropic models in this regime is novel.

This section is divided into three parts. In the first
part, the isotropic limit γ = 0 is considered. The sec-
ond part treats the low-temperature limit of the under-
screened case, which is conceptually very similar to the
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regime of high temperatures. The anisotropic case is
treated in the last part.

4.1 Isotropic case γ = 0, h = 0

In the high temperature regime, the first corrections to
the asymptotic value of the free energy are given by the
asymptotic corrections of the concerned auxiliary func-
tions for x → −∞. Corrections are of algebraic and
logarithmic-algebraic nature and can be found within an
asymptotic linearization scheme. This is also true for
l > m in the low-temperature limit, referring to the re-
gion x→ ∞. In this case, the set of l equations decouples
into two sets of m and l − m equations and the high-
temperature-linearization is directly transferable.

One makes use of the knowledge of the asymptotic be-
havior of the auxiliary functions derived in Appendix A to
extract the high-temperature behavior of the free energy,
the specific heat and magnetic susceptibility in zero field.
Employing once again the approximation equation (A.3),
this time in the integral of the free energy, we find

lim
T�TK

fi(T ) = −T ln(l + 1) +
ml(l+ 2)π

12
T

ln3 T
TK

(73a)

lim
T�TK

Ci(T ) =
1

ln4 T
TK

ml(l+ 2)π2

4
(73b)

lim
T�TK

χi(T ) =
l(l + 2)

12T

(
1 − m

ln T
TK

− m2 ln lnT/TK

2 ln2 T
TK

+
4m3φ(m) +m2/4

ln2 T
TK

)
. (73c)

Values for φ(m) are given in Table 2 for m = 1, . . . , 5. Let
us cite the special case m = 1,

φ(m = 1) = 0.04707± 2 × 10−7. (74)

Equations (73a–73c) constitute the first calculation of the
leading orders of the specific heat and magnetic suscepti-
bility for general m in the framework of an exact solution.
The single-channel case m = 1 agrees with known TBA-
results, [13]. Especially, the coefficient of the (lnT/TK)−2-
decay of the magnetic susceptibility is determined, from
which we will calculate Wilson’s number, relating the
high-temperature to the low-temperature scale.

From equation (73c), we calculate Wilson’s number for
the underscreened and exactly screened cases, l ≥ m. Let
us first draw our attention to the exactly screened spin-
1/2 case, l = 1 = m. Wilson [25] obtained for the zero-
field spin-1/2 susceptibility by his renormalization group
approach

lim
T→0

χi(T ) =
1

2πTK
=

0.1032± 0.0005

T̃K

T̃K

TK
= 2π(0.1032± 0.0005) =: 2πξ. (75)

This ratio relates the low-temperature scale TK to the
high-temperature scale T̃K , defined by absorbing the term
O(x−2) in the asymptotic expansion

lim
T�TK

χi(T ) =
1

2πT

∫ ∞

−∞

∂2
βh

[
ln B1B1

]
(x)

cosh (x+ lnT/TK)
dx

=
1

2T
∂2

βh

[
ln B1B1

]
(x = − lnT/TK)

= b
(χ)
1,0 +

b
(χ)
1,1

x
+
b
(χ)
1,1 ln |x|
x2

+
b
(χ)
1,2

x2

∣∣∣∣∣
x=− ln T/TK

= b
(χ)
1,0 +

b
(χ)
1,1

x− b
(χ)
1,2

b
(χ)
1,1

+
b
(χ)
1,l ln |x|
x2

∣∣∣∣∣∣∣∣
x=− ln T/TK

. (76)

Wilson’s number is identified to be

2πξ = exp

(
−b

(χ)
1,2

b
(χ)
1,1

)
. (77)

Andrei and Lowenstein [26] carried out a perturbative ex-
pansion of the 2S = m = 1 free energy, both for h/T 	 0
and T/h	 0. By requiring that in the first case, the result
should depend on h/Th, in the second case on T/T̃K , they
deduced the ratio Th/T̃K . Moreover, they determined the
ratio Th/TK from the (conventional) BA. Arguing that the
ratios of the energy scales are universal (unlike the scales
themselves, which do depend on the cutoff-scheme used),
they found by combining their two results (the analytical
expression is due to Hewson [27])

ξ =
eC+3/4

4π3/2
= 0.102676 . . . (78)

We generalize Wilson’s definition (77) to the general spin-
S case, in the presence of m channels. A scheme of nu-
merically solving the integral equations which allows for
the calculation of the corresponding ratios is given in the
appendix. For general l, m, equation (77) reads in the no-
tation of Section 4.1

2πξ = exp
[
−m2

(
4φ(m) +

1
4

)]
,

which only depends on m, analogously to the ratio T̃h/TK

for T = 0, equations (45, 46). This is in contradiction
with [28]. There, the Wilson numbers for S arbitrary,
m = 1 are calculated. The ratio TK/Th for T = 0 is
found by BA techniques for γ = 0 and agrees with ours,
equation (30) for γ = 0. Th/T̃K is found by conventional
perturbation theory. The resulting TK/T̃K depends expo-
nentially on S(S+1). We leave this question to be clarified.

By inserting equation (74), one gets for m = 1:

ξ = 0.102678± 2 × 10−6.

This result agrees with equations (75, 78). In Table 2, Wil-
son numbers for the general l ≥ m case are given. Note
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Table 2. Wilson numbers for l ≥ m.

m φ(m) ξ

1 0.04707 ± 2 × 10−5 0.102678 ± 2 × 10−6

2 0.0502 ± 1 × 10−4 6.4604 × 10−2 ± 6 × 10−6

3 0.044 ± 1.4 × 10−3 4.455 × 10−2 ± 8 × 10−5

4 0.038 ± 1.4 × 10−3 3.178 × 10−2 ± 7 × 10−5

5 0.034 ± 1.4 × 10−3 2.124 × 10−2 ± 6 × 10−5

that for 2S > m, the susceptibility at low temperatures
can be obtained from that at high temperatures by re-
placing l → (l −m). This does not change the value of ξ,
which means that in the under-screened cases, only one
scale (namely T̃K) governs the low- and high-temperature
behavior.

The over-screened case m > l is obtained from equa-
tions (73a, 73b, 73c) by replacing m → l and inserting
lnYj=l and its derivatives, equations (A.13, A.26), into
the definitions of the free energy, specific heat and suscep-
tibility. The Wilson numbers are again given in Table 2,
where now m → l, φ(m) → φ(l). In analogy to the ex-
actly and under-screened cases, TK has been identified as
a low-temperature scale also for the over-screened case in
equations (69a, 69b). From the universality of the low-
temperature Wilson ratio, we expect the Wilson number
in the over-screened case also to be universal, in analogy
to the exactly screened case.

4.2 Low temperature evaluation in the under-screened
case

In this section, we make use of the results of Appendix 2,
from which one deduces the low-temperature behavior in
the under-screened case of the following quantities (T �
TK):

fi(T ) = −T ln(l −m+ 1)

− T

ln3 TK

T

m (l −m)(l −m+ 2)π
12

Ci(T ) =
T

ln4 T
TK

m(l −m)(l −m+ 2)π2

4

χi(T ) =
(l −m)(l −m+ 2)

12T

(
1 +

m

ln TK

T

− m2 ln lnTK/T

2 ln2 TK

T

+
4m3φ(m) +m2/4

ln2 TK

T

)
. (79)

The low-temperature behavior for exact screening is given
in Section 3.1, where the expected Fermi liquid behavior
shows up. Similarly to T = 0, a change of sign in the lead-
ing corrections to the asymptotic values of the suscepti-
bility is observed, cf. equations (73c, 79). Its physical in-
terpretation has been given in the sequel of equation (48).
It applies analogously in this case.

4.3 Anisotropic case, γ �= 0

According to equation (8), the anisotropy parameter is re-
stricted to 0 ≤ γ ≤ π

2n , where n = max(l,m). Since the
kernel κ(x) decays exponentially in direct space, correc-
tions to lnB

(∞)
l , lnY (∞)

j are expected to be exponentially
small. Thus it is no longer permitted to replace convolu-
tions with s(x) by algebraic multiplications. Instead, let
us write equation (A.1) in direct space, with the same no-
tations as equation (A.2), however including a finite mag-
netic field from the beginning. First subtract the asymp-
totes (ζ := βh/2),

lim
x�0

2e−ζ sinh ζ(l + 1)
sinh ζl

δl(x) = lim
x�0

{−ex

+
[
s ∗ δl−1 + κ ∗ δl − κ− ∗ δl

]
(x)

}
. (80)

Contrary to the isotropic case, the driving term −ex can-
not be neglected since all quantities on the rhs of equa-
tion (80) are exponentially small. We did not find a closed
solution to equation (80), but determine the exponent of
the leading exponential decay. Therefore first note that
the equation

δ
(0)
− (x) = −ex +

∫ 0

−∞
κ(x− y)δ(0)− (y)dy

is directly solvable by Wiener-Hopf techniques. This solu-
tion relies on the fact that

1 −Fk[κ] =
sinh πk

2
π
γ

2 cosh πk
2 sinh πk

2

(
π
γ − l

)
is factorizable in functions analytical in the upper and
lower half planes. The leading decay is δ(0)− (x� 0) ∼ e

2γ
π x.

We take the solution δ
(0)
− as an ansatz for δ−, where ζ is

assumed to be small. It is seen that there is no further
restriction on the leading decay of δ−, such that

δ−(x� 0) ∼ e
2γ
π x.

However, we did not succeed in determining the coeffi-
cient. It depends on ζ, especially,

lim
x�0

[δ− + δ−](x) ∼ (ã1 + (βh)2ã2)e
2γ
π x

fi(T 	 TK) = −T
[

ln(l + 1)

+ (ã1 + (βh)2ã2)
(
TK

T

) 2γ
π

]
(81)

Ci(T 	 TK) ∼
(
TK

T

) 2γ
π

(82)

χi(T 	 TK) =
l(l + 2)

12T

(
1 − a2

(
TK

T

) 2γ
π

)
. (83)
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Note that both Ci and χi show similar decays, contrary
to the isotropic case.

If T � TK , one argues in close analogy to the isotropic
case: The decoupling into two independent sets still holds.
However, the asymptotic values of the auxiliary functions
for x → ∞ are related to their x → −∞ counterparts
by substituting l → (l − m) and scaling βh → αβh,
α = (1 − mγ/π)−1, equation (15). This scaling affects
the susceptibility:

fi(T � TK) = −T
[

ln(l −m+ 1)

+ (ã1 + (βhα)2ã2)
(
T

TK

) 2γ
π

]
(84)

Ci(T � TK) ∼
(
T

TK

) 2γ
π

(85)

χi(T � TK) =
(l −m)(l −m+ 2)α2

12T

×
(

1 − a2

(
TK

T

) 2γ
π

)
. (86)

The constants in equations (81–83) differ from those in
equations (84–86). For ease of notation, the same sym-
bols have been used. However, if we send T → 0 first
with h �= 0 and l > m, the rigorous linearization, Sec-
tion 3.2, is done. Then χ ∼ h−1 ln−2 h/TK , equation (48):
The T -dependent power-like divergence is replaced by a
logarithmic, h-dependent divergence.

5 Conclusion

We presented a novel exact solution to the anisotropic
multichannel spin-S Kondo model. The free energy con-
tribution of the impurity is given by a finite set of
(max[m, 2S]+1)-many NLIE. By analytical and numeri-
cal studies, we confirm and extend known properties of
this model.

The low temperature case is characterized by Fermi
liquid behavior in the sense that Wilson ratios are de-
fined. However, only in the exactly screened case l = m,
the limits T, h → 0 commute and Ci(T )/T , χi approach
finite values. These values were calculated by the diloga-
rithm technique and for l ≥ m = 1 by the dressed charge
formalism, in the framework of a rigorous linearization.

We analysed the ground state for arbitrary
anisotropy, spin and channel number and observed
non-commutativity of the limits h, T → 0 for models with
l �= m. In the underscreened case, if h = 0, an asymptotic
approach to free (l−m)/2 spin asymptotes was recovered
for T � TK , formally analogous to the T 	 TK case,
Section 4.2. On the other hand, performing first the
limit T → 0 while letting h �= 0, a non-integer rest spin
occurs for γ �= 0 in the underscreened case, equation (43),
connected to a quantum critical point [8,9].

We analyzed the low-temperature behaviour of the
over-screened models and found non-integer exponents of
h if T = 0, equation (54) and of T if h = 0, equa-
tions (69b, 69a). Especially, we determined numerically
low-temperature Wilson ratios for arbitrary anisotropy,
confirming and extending results by Affleck [22].

At high temperatures, T 	 TK , the impurity spin
approaches asymptotically the behavior of a free spin of
magnitude S = l/2. Corrections to the asymptotic val-
ues depend in their amplitude on the channel number m
and have been calculated analytically. Especially, Wilson
numbers relating low- to high-temperature scales are de-
termined with the help of a numerical solution.

We expect that new insight into the multichannel case
is obtained by generalizing the lattice path integral ap-
proach proposed in [11] for the isotropic S = 1/2, m = 1
model. To this aim,R-matrices must be constructed which
are invariant under the action of gl(2|1), containing higher
dimensional irreps of su(2), [29].

Finally, it should be possible to derive the quantities
determined numerically in this work also by analytical
methods. This question is left open for future investiga-
tions.

Appendix A: Asymptotic linearization

A.1 The region x → −∞

We begin with the asymptotic expansion of lnBl, lnBl,
l ≥ m in the region x→ −∞. The case m > l is obtained
therefrom afterwards. Consider the equation for Bl in the
h = 0-case:

ln bl = s ∗ lnYl−1 + κ ∗ ln Bl − κ− ∗ ln Bl (A.1)

We shall show that ln Bl(x), ln Bl(x) approach their
asymptotes x→ −∞ as x−3 and calculate the correspond-
ing coefficient b(l)3 .

The first l − 1 integral equations determine the j-
dependence of lnYj(x), j = 1, . . . , l−1. To see this, define

lnYj(x) = 2 ln(j + 1) + 2δj(x)
ln Bl(x) = ln(l + 1) + δl(x)

lim
x→−∞ δj(x) = 0

lim
x�0

ln yj(x) = ln j(j + 2) + 2
(j + 1)2

j(j + 2)
δj(x) + O (

δ2j
)

lim
x�0

ln bl(x) = ln l +
l + 1
l

δl(x) + O (
δ2l
)
. (A.2)

ln Bl (ln bl) is related to ln Bl (ln bl) by complex conju-
gation. The crucial approximation is

[s ∗ δj](x) ≈ δj(x)/2 + O(δ′′j (x)). (A.3)

Since s is an exponentially decaying kernel, this approxi-
mation is justified for algebraically decaying δj . Such an
algebraic behavior is indeed expected from the integration



M. Bortz and A. Klümper: Scales of the anisotropic multichannel spin-S Kondo model 39

kernel κ(x), which itself decays algebraically for γ = 0. In
the anisotropic case γ �= 0, this is not true, since δj(x)
also decays exponentially. The δj satisfy the recurrence
relations

2
(j + 1)2

j(j + 2)
δj(x) = δj+1(x) + δj−1(x) (A.4a)

δ0(x) ≡ 0 (A.4b)
l + 1
l

δl(x) = δl−1(x) + 3(l + 1)d(x), (A.4c)

where in the last line the function d(x) is to be determined
and its prefactor has been chosen by convenience. These
equations determine δj up to a constant factor. Note that
from equations (A.4a, A.4b)

δj(x) = j(j + 2)d(x).

Summarizing,

lnYj(x) = 2 ln(j + 1) + 2j(j + 2)d(x)
ln Bl(x) = ln(l + 1) + l(l+ 1)d(x). (A.5)

The functions Bl, Bl are related by complex conjuga-
tion, the Yi are real-valued,

ln Bl =: B1,l + iB2,l, ln Bl =: B1,l − iB2,l. (A.6)

Define the sum and the difference of the integration
kernels,

κ(s) (x) : = κ
(
x+ i

π

2

)
+ κ

(
x− i

π

2

)
= F−1

k

[
e−

π
2 |k|

]
κ(d) (x) : = κ

(
x+ i

π

2

)
− κ

(
x− i

π

2

)
= F−1

k

[
e−

π
2 |k| sinh π

2 k

cosh π
2 k

]
.

Asymptotically,

κ(s)
(
x+ i

π

2

)
∼ 1

2x2
− iπ

2x3
, |x| → ∞,

κ(d)(x) ∼ −i
π

2x3
, |x| → ∞. (A.7)

The convolutions with the κ-kernels are written in the
following way:

κ ∗ ln Bl − κ− ∗ ln Bl = κ
(d)
− ∗Bl,1 + iκ(s)

− ∗Bl,2

κ
(ν)
± (x) = κ(ν)

(
x± i

π

2

)
, ν = s, d.

The first non-vanishing term in an asymptotic expansion
of Bl,1(x) around |x| → ∞ is

Bl,1(x) ∼ ln(l −m+ 1) + ln
l + 1

l−m+ 1
θ(−x).

The θ-function has to be understood asymptotically for
large x. This regime is equivalent to small k-values in

Fourier-space, Fk[θ(−x)] = −i/k + πδ(k). In this re-
gion around the origin in Fourier space, πkFk[κ(s)]/2 ∼
Fk[κ(d)]. Thus it follows that

[
κ

(d)
− ∗Bl,1

]
(x) ∼ ln

l + 1
l −m+ 1

(
π2

4x3
− i

π

4x2

)
. (A.8)

It is useful to define correction terms to the asymptotic
behavior for x� 0:

lim
x→−∞ ln Bl(x) = ln(l + 1) +

b
(l)
1,3

x3
+ i

b
(l)
2,2

x2
. (A.9)

One then performs the asymptotic expansion

i
[
κ

(s)
− ∗Bl,2

]
(x)

∼ i
x2

(
1
2

∫ ∞

−∞
Bl,2(x) dx+ b

(l)
2,2

∫ ∞

−∞
κs(x) dx

)
− π

x3

(
1
2

∫ ∞

−∞
Bl,2(x) dx+ b

(l)
2,2

∫ ∞

−∞
κs(x) dx

)
, (A.10)

where∫ ∞

−∞
κ(s)(x) dx = 1∫ ∞

−∞
Bl,2(x) dx =

π

2

(
−(m± 10−5) + ln

l + 1
l −m+ 1

)
.

The last integral is done numerically with the indicated
precision. In the following, we set∫ ∞

−∞
Bl,2(x) dx =

π

2

(
−m+ ln

l + 1
l−m+ 1

)
. (A.11)

Insert equation (A.9) in equation (A.2) and keep only the
linear order in δl,

ln bl(x) ∼ ln l+
l + 1
l

(
b
(l)
1,3

x3
+ i

b
(l)
2,2

x2

)
. (A.12)

Combining equations (A.8, A.10, A.12) one expands equa-
tion (A.1) around x→ −∞:

ln l+
l + 1
l

b
(l)
1,3

x3
= ln l + (l − 1)(l + 1)d(x)

+
π2

4x3
ln

l + 1
l −m+ 1

− π

x3

(
1
2

∫ ∞

−∞
B2,l(x)dx+ b

(l)
2,2

)
l + 1
l

b
(l)
2,2

x2
=

1
x2

(
−π

4
ln

l + 1
l −m+ 1

+
1
2

∫ ∞

−∞
B2,l(x)dx+ b

(l)
2,2

)
.
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B
(m)
l (x) = ∆+ − ∆−sgnx +

1

x
(∆

(1)
+ − ∆

(1)
− sgnx) +

ln |x|
x2

(∆
(1)
+ − ∆

(1)
− sgnx) +

1

x2
(∆

(2)
+ − ∆

(2)
− sgnx) (A.19)

[
κ ∗ B

(m)
l

]
(x) =

∆+ − ∆−sgnx

2
+

1

2x

(
∆− + ∆

(1)
+ − ∆

(1)
− sgnx

)
−
(
∆

(1)
− − ∆

(l)
+ + ∆

(l)
− sgnx

) ln |x|
2x2

+
(
∆

(1)
− Ψ(2) + ∆

(2)
+ − ∆

(2)
− sgnx +

ε

2

) 1

2x2
, (A.20)

Using equation (A.11), we find:

d(x) =
π2

12
m

x3
, b

(l)
2,2 = − l mπ

4

b
(l)
1,3 =

l(l + 2)m
3

π2

4
,

lim
x→−∞ lnYj(x) = 2 ln(j + 1) + j(j + 2)

mπ2

6x3
,

lim
x→−∞ ln Bl(x) = ln(l + 1) − i

ml π

4 x2
+
ml(l + 2)π2

12 x3
.

(A.13)

Note that the x-dependence of the corrections is deter-
mined through the asymptotic behavior of the kernel in
the convolutions κ∗ lnBl, κ∗ lnBl. The amplitudes follow
from the Y -hierarchy.

We proceed with the asymptotic evaluation of
∂βh ln Yj(x), ∂βh ln Bl(x) in the regime x � 0. The lnYj

are symmetric with respect to βh: The system of NLIE
remains the same upon replacing βh → −βh and sub-
stituting Bl by Bl. So ∂βh lnYj vanishes identically for
h = 0. Define B(m)

l := ∂βh ln Bl. Then the only equation
which remains is

B
(m)
l (x) =

(
1 − e− ln Bl(x)

)[1
2

+ [κ ∗B(m)
l

−κ− ∗B(m)

l ](x)
]
. (A.14)

B
(m)
l and B

(m)

l are related by change of sign and complex
conjugation,

B
(m)
l =: B(m)

l,1 + iB(m)
l,2

B
(m)

l = −
[
B

(m)
l

]∗
= −B(m)

l,1 + iB(m)
l,2 .

Below it is shown that the imaginary part of B(m)
l van-

ishes for h = 0, so B(m)
l ≡ B

(m)
l,1 is real valued. We shall

determine asymptotic corrections to B
(m)
l up to the or-

der O (
x−2

)
, so that corrections to ln Bl(±∞) (of order

O (
x−3

)
), can safely be neglected. In this approximation,

lim
x→−∞

(
1 − e− ln Bl(x)

)
=

l

l + 1

(
1 + i

π

4x2

)
lim

x→∞

(
1 − e− ln Bl(x)

)
=

l −m

l −m+ 1

(
1 + i

π

4x2

)
, (A.15)

and one finds the asymptotic equation for B(m)
l ,

lim
x�0

B
(m)
l (x) =

l

l + 1

(
1
2

+ κ(s) ∗B(m)
l

)
. (A.16)

The imaginary contributions vanish as expected. An equa-
tion analogous to (A.16) does not exist in the TBA-
approach, where one deals with the infinitely many Yj and
their derivatives. But Y (m)

j ≡ 0 ∀j, as mentioned above.

The constant asymptotic behavior of B(m)
l is written

in the compact form

B
(m)
l (x) = ∆+ −∆−sgnx (A.17)

∆+ +∆− =
l

2
∆+ −∆− =

l −m

2
.

Equation (A.17) and similar equations in the following
have to be understood asymptotically, for |x| → ∞. In a
similar manner,

κ(s) ∗ sgnx = sgnx− 1
x

κ(s) ∗ sgnx
x

=
sgnx
x

+
ln |x|
x2

− Ψ(2)
x2

(A.18a)

κ(s) ∗ 1
x

=
1
x
, κ(s) ∗ ln |x|

x2
=

ln |x|
x2

. (A.18b)

Ψ(x) is the digamma function; Ψ(2) = −C + 1, C =
0.577 . . . is Euler’s constant. The asymptotic evaluation
of the convolutions is done by using distributions. To de-
termine accurately the x−2-coefficient, the precise behav-
ior of the auxiliary functions around the origin must be
known. This is done numerically as shown below.

We make the following ansatz for B(m)
l , which consists

in extrapolating the asymptotic behavior over the whole
axis with the aid of distributions:

See equations (A.19, A.20) above,

where ε is determined numerically (cf. Appendix,
Eq. (B.3)). The convolutions in the second equation
are done with the help of equations (A.18a, A.18b).
The terms sgnx and sgnx/x give the next higher or-
der contribution when convoluted with the kernel. The
asymptotic form of equation (A.16) is found by inserting
equations (A.19, A.20). By comparing coefficients, one
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finds

∆
(1)
+ +∆

(1)
− = l ∆− =

m · l
4

∆
(1)
+ =

m(2l −m)
8

∆
(1)
+ −∆

(1)
− = (l −m)∆− =

m(l −m)
4

∆
(1)
− =

m2

8

∆
(l)
+ +∆

(l)
− = −l∆(1)

− = −m
2 · l
8

∆
(l)
+ −∆

(l)
− = −(l −m)∆(1)

− = −m
2(l −m)

8
∆

(2)
+ +∆

(2)
− = l(∆(1)

− Ψ(2) + ε/2) (A.21)

∆
(2)
+ −∆

(2)
− = (l −m)(∆(1)

− Ψ(2) + ε/2). (A.22)

In the high-temperature regime, the x → − lnT/TK � 0
behavior is of importance,

lim
x�0

B
(m)
l (x) =

l

2
+
ml

4 x
− m2 l

8
ln |x|
x2

+
l

x2

(
m2 Ψ(2)

8
+
ε

2

)
. (A.23)

Compare equation (A.23) with the low temperature re-
sults equations (47, 48). Both are formally identical up
to the order ln |x|/x2, x = − lnT/TK in equation (A.23),
x = − lnh/T̃h in equations (47, 48).

We shall focus on the x→ +∞ asymptotes in the next
paragraph.

Our analysis is continued by expanding ∂2
βh lnYj =:

Y
(χ)
j , ∂2

βh ln Bl =: B(χ)
l , ∂2

βh ln Bl =: B
(χ)

l . These func-
tions are given by the system

Y
(χ)
j =

(
1 − e− ln Yj

)
s ∗

(
Y

(χ)
j−1 + Y

(χ)
j+1

)
(A.24a)

Y
(χ)
0 ≡ 0 (A.24b)

B
(χ)
l =

e− lnBl

1 − e− ln Bl

[
B

(m)
l

]2
+
(
1 − e− ln Bl

)
s ∗ Y (χ)

l−1

+
(
1 − e− ln Bl

) (
κ ∗B(χ)

l − κ− ∗B(χ)

l

)
(A.24c)

B
(χ)
l =: B(χ)

l,1 + iB(χ)
l,2 .

The vanishing of B(m)
2 helps to expand B(χ)

1 :

B
(χ)
l,1 =

1
l

[
B

(m)
l,1

]2
+

l

2(l+ 1)
Y

(χ)
l−1

+
l

l + 1
Re

(
κ

(d)
− ∗B(χ)

l,1 + iκ(s)
− ∗B(χ)

l,2

)
(A.25a)

B
(χ)
l,2 = −πm

4x2

[
B

(m)
l,1

]2
+

lm

l + 1
π

8x2
Y

(χ)
l−1

+
l

l + 1
Im

(
κ

(d)
− ∗B(χ)

l,1 + iκ(s)
− ∗B(χ)

l,2

)
. (A.25b)

From equation (A.25b), B(χ)
l,2 = O (

x−2
)
. Together with

equation (A.7), one concludes that the last term in brack-
ets in equation (A.25a) is O (

x−3
)
. This means that for

our purposes, the convolutions in equation (A.25a) can

be entirely neglected. Thus in the asymptotic limit, equa-
tions (A.24a–A.24c) are simplified considerably:

Y
(χ)
j =

j(j + 2)
2(j + 1)2

(
Y

(χ)
j−1 + Y

(χ)
j+1

)
Y

(χ)
0 ≡ 0

B
(χ)
l =

1
l

[
B

(m)
l

]2
+

l

2(l + 1)
Y

(χ)
l−1 .

This system bears similarity with equations (A.4a–A.4c).
From the solution of those equations, we conclude

lim
x→−∞Y

(χ)
j (x) =

j(j + 2)
6

(
1 +

m

x
− m2 ln |x|

2x2

+
(
m2

2
Ψ(2) +

m2

4
+ 2ε

)
1
x2

)
(A.26)

lim
x→−∞B

(χ)
l (x) = b

(χ)
l,0 +

b
(χ)
l,1

x
+ b

(χ)
l,2

ln |x|
x2

+
b
(χ)
l,2

x2

=
l(l+ 2)

12

(
1 +

m

x
− m2 ln |x|

2x2

+
(
m2

2
Ψ(2) +

m2

4
+ 2ε

)
1
x2

)
.

In Appendix B, a procedure for numerically determining
the coefficient ∆(2)

+ − ∆
(2)
− sgnx of the x−2-decay is de-

scribed. It deviates slightly from the analytical estimate.
We introduce an extra symbol φ,

φ(m) :=

(
∆

(2)
+ +∆

(2)
−
)

lm3
=

1
m3

(
m2

8
Ψ(2) +

ε

2

)
. (A.27)

Numerically, φ is found to be independent of l. However,
our data do not suffice to exclude a dependence on m. The
results are given in Table 2 in the main body of this work.

If l < m, one replaces in the whole preceding analysis
of this appendix l → m and m→ l. The thermodynamical
quantities are given by Yl and its derivatives.

A.2 The region x → ∞

We determine the behavior of the auxiliary functions for
large values x → ∞ in the under-screened case l > m. In
this limit, the set of NLIE decouples in two separate sets
with exponential accuracy. Consider first the field-free case
h = 0. The last l−m functions, namely Ym+1, . . . ,Bl,Bl,
satisfy a set of equations formally identical to equa-
tions (A.4a–A.4c), with j, l replaced by j −m, l−m. The
whole analysis of the preceding paragraph applies to this
case; of special interest are now the corrections to the
x ∼ ln TK

T 	 0-behavior of the auxiliary functions. The
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results are:

Bl(x) = ln(l −m+ 1) − i
m (l −m)π

4 x2

+
m (l −m)(l −m+ 2)π2

12 x3

lnYj>m(x) = ln(l + 1 − j) +
m (l −m)(l −m+ 2)π2

6 x3

B
(m)
l (x) =

l −m

2
+
m (l −m)

4 x
− m2 (l −m)

8
ln |x|
x2

+
l −m

x2

(
m2Ψ(2)

8
+
ε

2

)
Y

(χ)
j (x) =

(j −m)(j −m+ 2)
6

(
1 +

m

x
− m2 ln |x|

2x2

+
(
m2

2
Ψ(2) +

m2

4
+ 2ε

)
1
x2

)
B

(χ)
l (x) =

(l −m)(l −m+ 2)
12

(
1 +

m

x
− m2 ln |x|

2x2

+
(
m2

2
Ψ(2) +

m2

4
+ 2ε

)
1
x2

)
.

Appendix B: Details of the numerical
treatment

From the analytical analysis of the NLIE, numerically ill-
conditioned terms were found, namely those O(1), O(x−1)
in the limit |x| → ∞ 1. Since in Fourier space, they would
appear as simple poles and discontinuities in the origin,
they are subtracted from the auxiliary functions before
performing the FFT and treated separately. After having
applied the inverse FFT, the analytically convoluted terms
are re-added:

κ ∗ lnY = κ ∗ (lnY − f)︸ ︷︷ ︸
N

+ κ ∗ f︸ ︷︷ ︸
A

, (B.1)

lim
|x|→∞

lnY (x) ∼ f(x), (B.2)

and κ is a kernel, lnY an auxiliary function. The
function f is chosen to be asymptotically equal to
lnY , equation (B.2), and contains the numerically
ill-conditioned contributions. The difference lnY − f
is therefore numerically transformable. The term de-
noted by N is treated numerically, that labeled by A
analytically. The Fourier-transforms of f and κ are
known. The convolution k ∗ f is solved separately,
such that no further manipulations in Fourier space
are necessary. We solve numerically for (lnY − f):
By including terms O(1), O(x−1) and O(ln |x|/x2) in
f(x), the function (lnY − f) decays as x−2. Since the
kernels also decay as x−2, the coefficient of the x−2

decay of lnY is obtained from the integral of (ln Y − f),
a quantity which is accessible numerically with high

1 Algebraic corrections to the asymptotes only occur in the
isotropic case.

accuracy. Consider the case lnY ≡ B
(m)
l , given by (A.14),

and define the regular function Breg := B
(m)
l − f , such

that Breg(|x| → ∞) ∼ x−2. Then for |x| → ∞

κ ∗Breg(x) ∼ κ(x)
∫ ∞

−∞
Breg(x) dx

+Breg(x)
∫ ∞

−∞
κ(x) dx, (B.3)

and the quantity ε in equation (A.20) is identified as ε :=∫∞
−∞Breg(x) dx.
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